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5. CONCLUSIONS 

Strongly coupled fluid-structure interaction between 
slurry and a polycarbonate tube has been investigated 
numerically by using the finite element code LS-
DYNA_971. Numerical wave speeds along the water-filled 
tube are in good agreement with the current experimental 
data and theoretical estimations proposed by Han et al. 
However, there are discrepancies between the results 
obtained using the models and the experimental results in 
the case of slurry with a high volume fraction of particles. 
In addition, the computational results are validated as the 
hoop strains in all models reveal excellent agreement with 
Tijsseling’s thick-wall equation. 

Numerical results indicate that the increasing 
percentage of particles in the slurry decreases the primary 
wave propagation speeds but restrains the pressures, as the 
reported theoretical and experimental findings consistently 
show less dependence on pressure. The main trend has 
been shown between the present results and theoretical 
findings. Non-homogeneity and viscosity effects on the 
slurry will be included in future investigations. 
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